Numerical Algorithms 0 ( 1998 ) ? { ? 1 A Hybrid Nonoverlapping Domain DecompositionScheme for Advection Dominated Advection - Di usionProblems
نویسندگان
چکیده
Two nonoverlapping domain decomposition algorithmsare proposed for convectiondom-inated convection-diiusion problems. In each subdomain, artiicial boundary conditions are used on the innow and outtow boundaries. If the ow is simple, each subdomain problem only needs to be solved once. If there are closed streamlines, an iterative algorithmis needed and the convergence is proved. Analysis and numerical tests reveal that the methods are advantageous when the diiusion parameter is small. In such cases, the error introduced by the domain decomposition methods is negligible in comparison with the error in the singular layers, and it allows easy and eecient grid reenement in the singular layers.
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملA Simplified Solution for Advection Dominated Accretion Flows with Outflow
The existence of outflow in the advection dominated accretion flows has been confirmed by both numerical simulations and observations. The outow models for ADAF have been investigated by several groups with a simple self similar solution. But this solution is inaccurate at the inner regions and can not explain the emitted spectrum of the flow; so, it is necessary to obtain a global solution for...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملA Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems
We propose a domain decomposition method for advection-diffusionreaction equations based on Nitsche’s transmission conditions. The advection dominated case is stabilized using a continuous interior penalty approach based on the jumps in the gradient over element boundaries. We prove the convergence of the finite element solutions of the discrete problem to the exact solution and we propose a pa...
متن کاملExplicit Finite Difference Schemes for the Advection Equation
Conventional explicit nite diierence schemes for the advection equations are subject to the time step restrictions dictated by the CFL condition. In many situations, time step sizes are not chosen to satisfy accuracy requirements but rather to satisfy the CFL condition. In this paper we present explicit algorithms which are stable far beyond the CFL restriction. Similar or even better accuracy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998